Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[di- μ_{2}-aqua-hexaquabis $\left(\mu_{4}\right.$-benzene-1,3,5-tricarboxylato)trinickel(II)]

Ying-Ying Liu, Jian-Fang Ma* and Ji-Cheng Ma

Department of Chemistry, Northeast Normal University, Changchun 130024, People's
Republic of China

Correspondence e-mail:
jianfangma@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.085$
Data-to-parameter ratio $=11.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The solvothermal reaction of nickel ${ }^{\text {II }}$ acetate with H_{3} BTC (benzene-1,3,5-tricarboxylic acid) in water gave the title complex, $\quad\left[\mathrm{Ni}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]_{n}$. Single-crystal X-ray analysis shows that the structure contains four crystallographically unique Ni atoms. Two of these each lie at a center of symmetry and each is coordinated by two water molecules and four O atoms from four carboxylate groups. The other two are each coordinated by four water molecules and two O atoms from two carboxylate groups. The different types of chemically unique Ni atoms are connected by $\mu_{2}-\mathrm{H}_{2} \mathrm{O}$ and carboxylate groups of BTC ligands to form two two-dimensional networks. The hydrogen-bonding interactions between the layers further connected these two-dimensional layers into a three-dimensional frame work in a parallel fashion.

Comment

In recent years, intense research activity has been directed toward the assembly of coordination polymers due to their intriguing structural motifs and potential applications (Sato et al., 1996). The three carboxylate groups of $1,3,5-\mathrm{H}_{3} \mathrm{BTC}$ (benzene-1,3,5-tricarboxylic acid) have a very versatile coordination behavior. Much of the work has so far been focused on coordination polymers with this ligand (Chui et al., 1999; Chen et al., 2005). Although the construction of complexes from $1,3,5-\mathrm{H}_{3}$ BTC and $\mathrm{Ni}^{\mathrm{II}}$ metal has been extensively studied (Michaelides et al., 1997; Kepert \& Rosseinsky, 1998; Choi \& Suh, 1998; Kepert et al., 2000a,b; Prior \& Rosseinsky, 2001a,b; Choi et al., 2001; Zhang et al., 2003), the title trinuclear $\mathrm{Ni}^{\text {II }}$ coordination polymer, (I), has never been reported. Its structure is presented here.

Received 8 August 2006
Accepted 14 August 2006

Figure 1
View of the coordination environments of the four independent Ni atoms in (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $1+x, y, z$; (ii) $-1+x, y, z$; (iii) $-x,-y,-z$; (iv) $-1-x, 1-y,-z$; (v) $-1-x,-y,-z$; (vi) $1+x,-1+y, z$; (vii) $-1-x$, $2-y,-1-z ;$ (viii) $-x, 1-y,-1-z$; (ix) $-1+x, y, z ;(x)-1+x, 1+y, z$; (xi) $-x, 2-y,-1-z$.]

Figure 2
A polyhedral representation of the layers of (I).
There are four kinds of crystallographically independent Ni atoms in (I), and all of them adopt six-coordinate environments (Fig. 1). Atoms Ni1 and Ni2 are chemically identical, and each of them lies at a center of symmetry and is coordinated by two water molecules and four O atoms from four carboxylate groups. Atoms Ni 3 and Ni 4 are chemically identical, and each of them is coordinated by four water molecules and two O atoms from two carboxylate groups. The bond distances of $\mathrm{Ni}-\mathrm{O}$ (carboxylate) and $\mathrm{Ni}-\mathrm{O}$ (water) are 2.034 (2)-2.146 (2) and 2.045 (2)-2.087 (2) \AA respectively, which are in agreement with the normal distances in the
related compound $\left[\mathrm{Ni}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\right]$ (Zhang et al., 2003). All carboxylate groups of the two crystallographically independent $\mathrm{H}_{3} \mathrm{BTC}$ ligands are deprotonated, and display two different kinds of coordination modes, viz. bidentate bridging and monodentate mode. Based on its connection modes, each BTC ligand coordinates to four $\mathrm{Ni}^{\mathrm{II}}$ centers.

The trinuclear cluster, which consists of two nickel octahedra of Ni 3 and $\mathrm{Ni} 3^{\mathrm{i}}$, linked by $\mu_{2}-\mathrm{O} 7 W / \mathrm{O} 7 W^{i}$ to the octahedron of Ni1 (or octahedra of Ni 4 and $\mathrm{Ni4}{ }^{\mathrm{i}}$ linked by $\mu_{2^{-}}$ $O 8 W / O 8 W^{i}$ to the octahedron of Ni 2), acts as the repeating structural motif, together with carboxylate groups of BTC ligands, forming two two-dimensional networks [Fig. 2; symmetry code: (i) $-x,-y,-z]$. The non-bonding $\mathrm{Ni} \cdots \mathrm{Ni}$ distances are 3.596 (1) and 3.624 (1) \AA for $\mathrm{Ni} 1 \cdots \mathrm{Ni} 3$ and $\mathrm{Ni} 2 \cdots \mathrm{Ni} 4$, respectively. The layers are stacked in an $-A B A B-$ sequence along the c axis to form a three-dimensional structure through hydrogen bonds (Fig. 3). The hydrogen-bond distances and angles are listed in Table 2. It can be seen that there are eight H atoms involved in hydrogen-bonding in the asymmetric unit. All of them belong to water molecules. The carboxylate O atoms play the role of acceptors. The hydrogenbonding interactions within the layer and between the layers enhance the stability of the compound (I) and lead to a threedimensional structure.

Experimental

A mixture of $\mathrm{Ni}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.1867 \mathrm{~g}, 0.75 \mathrm{mmol})$ and $\mathrm{H}_{3} \mathrm{BTC}$ $(0.1051 \mathrm{~g}, 0.5 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was sealed in a 15 ml Teflonlined stainless steel bomb and heated to 433 K for 3 d ; very fine green crystals were obtained after slow cooling to room temperature at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$. Yield 74% (based on Ni). Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{Ni}_{3} \mathrm{O}_{20}$: C 29.43 , H 3.03\%; found: C 29.29 , H 3.11\%.

Crystal data

$\left[\mathrm{Ni}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{3} \mathrm{O}_{6}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]$
$M_{r}=734.49$
Triclinic, $P \overline{1}$
$a=10.040$ (5) \AA
$b=10.092$ (5) \AA
$c=13.165$ (5) \AA
$\alpha=75.719(5)^{\circ}$
$\beta=68.643(5)^{\circ}$
$\gamma=65.409(5)^{\circ}$
$V=1122.5(9) \AA^{3}$
$Z=2$
$D_{x}=2.173 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=2.60 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, green
$0.38 \times 0.28 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEX CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.42, T_{\text {max }}=0.65$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.085$
$S=1.09$
5008 reflections
421 parameters
H atoms treated by a mixture of independent and constrained refinement

6913 measured reflections
5008 independent reflections 4047 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.013$
$\theta_{\text {max }}=28.3^{\circ}$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0477 P)^{2}\right. \\
\quad+0.3629 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.44 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.57 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Ni1-O5 ${ }^{\text {i }}$	2.034 (2)	Ni3-O1W	2.068 (2)
Ni1-O7W	2.046 (2)	Ni3-O4	2.083 (2)
$\mathrm{Ni} 1-\mathrm{O} 2^{\text {ii }}$	2.146 (2)	Ni3-O2W	2.087 (2)
$\mathrm{Ni} 2-\mathrm{O} 10^{\text {iii }}$	2.049 (2)	$\mathrm{Ni} 4-\mathrm{O} 9^{\text {iii }}$	2.036 (2)
Ni2-O8W	2.076 (2)	Ni4-O5W	2.056 (2)
Ni2-O11 ${ }^{\text {iv }}$	2.113 (2)	Ni4-O4W	2.066 (2)
$\mathrm{Ni} 3-\mathrm{O}^{\text {i }}$	2.040 (2)	Ni4-O8	2.069 (2)
Ni3-O7W	2.045 (2)	Ni4-O6W	2.072 (2)
Ni3-O3W	2.054 (2)	Ni4-O8W	2.072 (2)
$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{O} 2^{\mathrm{v}}$	87.41 (7)	$\mathrm{O} 9^{\text {iii }}-\mathrm{Ni} 4-\mathrm{O} 8$	97.04 (7)
$\mathrm{O} 10^{\text {vi }}-\mathrm{Ni} 2-\mathrm{O} 11^{\text {iv }}$	87.74 (7)	Ni3-O7W-Ni1	123.07 (7)
$\mathrm{O} 6{ }^{\text {i }}-\mathrm{Ni} 3-\mathrm{O} 4$	96.66 (7)	$\mathrm{Ni} 4-\mathrm{O} 8 W-\mathrm{Ni} 2$	121.78 (7)

Symmetry codes: (i) $x+1, y, z$; (ii) $x+1, y-1, z$; (iii) $x-1, y, z$; (iv) $x-1, y+1, z$; (v) $-x-1,-y+1,-z ;(\mathrm{vi})-x,-y+2,-z-1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O2 } W-\mathrm{H} 2 A \cdots \mathrm{O}^{\text {vii }}}$	$0.797(17)$	$2.121(19)$	$2.891(3)$	$163(3)$
O5 $^{2}-\mathrm{H} 5 B \cdots \mathrm{O}^{v}$	$0.876(17)$	$2.025(19)$	$2.892(3)$	$170(3)$
O1 $W-\mathrm{H} 1 A \cdots \mathrm{O} 11$	$0.888(17)$	$1.898(18)$	$2.781(3)$	$172(3)$
O3 $W-\mathrm{H} 3 B \cdots$ O8	$0.860(17)$	$1.87(2)$	$2.648(3)$	$150(3)$
O4W-H4A \cdots O4	$0.896(17)$	$1.86(2)$	$2.705(3)$	$157(3)$
O5W-H5A \cdots O2	$0.917(18)$	$2.05(2)$	$2.909(3)$	$156(3)$
O7W-H7A \cdots O3	$0.865(16)$	$1.708(17)$	$2.561(3)$	$168(3)$
O8W-H8B \cdots O7	$0.872(16)$	$1.760(18)$	$2.612(3)$	$165(3)$

Symmetry codes: (v) $-x-1,-y+1,-z$; (vii) $-x,-y+1,-z-1$.
All H atoms bound to carbon were refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms. Water H atoms were located in a difference Fourier map and refined without $\mathrm{O}-\mathrm{H}$ distance restraints and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

We thank the National Natural Science Foundation of China (No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (NCET-05-0320), the Fok Ying Tung Education Foundation, the Science Foundation for Young Teachers of NENU (No. 20050310), and the Analysis and Testing Foundation of Northeast Normal University for support.

Figure 3
Three-dimensional packing arrangement of (I) through hydrogen bonds. Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

References

Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, L. F., Zhang, J., Song, L. J. \& Ju, Z. F. (2005). Inorg. Chem. Commun. 8, 555-558.
Choi, H. J. \& Suh, M. P. (1998). J. Am. Chem. Soc. 120, 10622-10628.
Choi, K. Y., Chun, K. M. \& Suh, I. H. (2001). Polyhedron, 20, 57-65.
Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. \& Williams, I. D. (1999). Science, 283, 1148-1150.

Kepert, C. J., Prior, T. J. \& Rosseinsky, M. J. (2000a). J. Am. Chem. Soc. 122, 5158-5168.
Kepert, C. J., Prior, T. J. \& Rosseinsky, M. J. (2000b). J. Solid State Chem. 152, 261-270.
Kepert, C. J. \& Rosseinsky, M. J. (1998). J. Chem. Soc. Chem. Commun. pp. 3132.

Michaelides, A., Skoulika, S., Kiritsis, V., Raptopoulou, C. \& Terzis, A. (1997). J. Chem. Res. pp. 204-205.

Prior, T. J. \& Rosseinsky, M. J. (2001a). Chem. Commun. pp. 495-496.
Prior, T. J. \& Rosseinsky, M. J. (2001b). Chem. Commun. pp. 1222-1223.
Sato, O., Iyoda, T., Fujishima, A. \& Hashimoto, K. (1996). Science, 271, 49-51.
Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, W., Bruda, S., Landee, C. P., Parent, J. L. \& Turnbull, M. M. (2003). Inorg. Chim. Acta, 342, 193-201.

